[[Number field]]
# Norm of a number field

Let $K$ be a [[number field]].
Then the [[Field norm]] of $K$ is given by
$$
\begin{align*}
N_{K:\mathbb{Q}}(\gamma) = \prod_{i=1}^n \sigma_{i}(\gamma)
\end{align*}
$$
where $\sigma_{i} : K \hookrightarrow \mathbb{C}$ enumerate the field embeddings of $K$ into the complex numbers. #m/thm/num/alg

> [!missing]- Proof
> #missing/proof


#
---
#state/develop | #lang/en | #SemBr